t-Designs with few intersection numbers
نویسندگان
چکیده
Pott, A. and M. Shriklande, t-Designs with few intersection numbers, Discrete Mathematics 90 (1991) 215-217. We give a method to obtain new i-designs from t-designs with j distinct intersection numbers if i + j 1 does not exceed t.
منابع مشابه
A Note on t-designs with t Intersection Numbers
Let X be a finite set of v elements, called points, and let β be a finite family of distinct k-subsets of X , called blocks. Then the pair D = (X ,β) is called a t-design with parameters (v,k,λ) if any t-subset of X is contained in exactly λ members of β. If λi denotes the number of blocks containing i points, i = 0,1,2, . . . , t−1, then λi is independent of the choice of the i points and λi (...
متن کاملMore on block intersection polynomials and new applications to graphs and block designs
The concept of intersection numbers of order r for t-designs is generalized to graphs and to block designs which are not necessarily t-designs. These intersection numbers satisfy certain integer linear equations involving binomial coefficients, and information on the nonnegative integer solutions to these equations can be obtained using the block intersection polynomials introduced by P.J. Came...
متن کاملOn the structure of 1-designs with at most two block intersection numbers
We introduce the notion of an unrefinable decomposition of a 1-design with at most two block intersection numbers, which is a certain decomposition of the 1-designs collection of blocks into other 1-designs. We discover an infinite family of 1-designs with at most two block intersection numbers that each have a unique unrefinable decomposition, and we give a polynomial-time algorithm to compute...
متن کاملQuasi-symmetric 3-designs with a fixed block intersection number
Quasi-symmetric 3-designs with block intersection numbers x, y (0 ≤ x ≤ y < k) are studied. It is proved that the parameter λ of a quasi-symmetric 3-(v, k, λ) design satisfies a quadratic whose coefficients are polynomial functions of k, x and y. We use this quadratic to prove that there exist finitely many quasi-symmetric 3-designs under either of the following two restrictions: 1. The block i...
متن کاملConstruction of a Class of Quasi-Symmetric 2-Designs
In this article we study proper quasi-symmetric 2 − designs i.e. block designs having two intersection numbers and , where 0 < < . Also, we present a construction method for quasi-symmetric 2 − designs with block intersection numbers and + 1, where is a prime number, under certain conditions on the cardinality of point set.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 90 شماره
صفحات -
تاریخ انتشار 1991